
Intro to Kubernetes
What you didn’t and was afraid to ask about Kubernetes

Emmanuel Joliet / Loi ly
IPAC Containerization Workshop (GRITS 2019)

Caltech, September 12th, 2019

Problems

• See virtualization problem and container solution in previous talk(s)
• Now, I have more than one container, what should I do?
• Container is down
• Cloud has changed
• Number of users increased, how do I start more containers?
• Can I do automatic load balancing while I’m having coffee?
• Can I monitor if my container(s) goes down?

Solution
• Docker made popular containers
• Container = scale (lightweight?) and portable (self contained, no external

dependencies)
• portable across clouds and OS distributions (!=VMs)

• Fail-over and load-balancing: Container can be replicated at runtime
• Need an orchestration to deal with multiple hosts and containers
• Kubernetes jargon, orchestra is cluster of nodes and master(s)

• Pod(s) in a node run container(s): storage, network and cpu
• `Agent` - each node has one to communicate with master node
• `Pod` = collection of one or more containers

• Efficiently distributing the workload across available resources (VMs!)
• Orchestration can be deployed in local cluster or cloud
• Network policy to avoid exposing all nodes, but only the one that connect

outside to protect the rest – Ingress controller (it’s a container, surprise!)

Kubernetes

• Open-source system for automating deployment, scaling, and management of
containerized applications

• reduce infrastructure requirements by easily scaling up and down your entire
platform, vertically (± hosts resources) and horizontally (± pods)

• Orchestra: what containers run where and when across your system
• From outside, URL to application doesn’t need to change while internal pods

changes (for example: software update, system update or balancing/scaling)
• Install local utilities: kubectl and minikube

https://kubernetes.io/docs/tasks/tools/install-kubectl/
• Checkout the Kubernetes docs

https://kubernetes.io/docs/home/
• Example of usage in IPAC: Firefly development pods following git pull request

workflow, each pod deplys a build of a branch – see Jenkins

Kubernetes

POD

POD

POD

POD

Container

Tomcat Firefly.war

irsawebdev9:8080/nightly/firefly//vol/data

Deployment

• Kubernetes uses ‘object’ to specify state and information, using either the API or the
client CLI ‘kubectl’

• `kubectl apply -f deployment.yaml`
• Objects are defined with configuration file in YAML format
• Cluster (nodes running containerized apps) will run and control those objects, typically

pods
• Kubernetes support Docker as container runtime among others, via `kubelet` agent
• Includes container(s), unique network IP, storage resources
• Single container is most used model
• Run on nodes via a controller handling replication and failures
• Have lifecycle with phases pending, running, etc.

• Expose pods to outside, need clusterIP and Service to (load) balance the pods
themselves and have unique address for outside

• Ingress object or controller
• Define routing traffic

IRSA UI use case
• Kubernetes in dev environment for UI development
• Docs and files in Firefly github repos

• https://github.com/Caltech-
IPAC/firefly/blob/53618ba5d60c81c2b26d0f3611b0f4384430e1b9/docker/k8
s/firefly.yaml

• Jenkins jobs triggers a build, docker image and spinning up a pod with
the container

• Pull request branches are tested using a pod
• Unique URL is exposed irsawebdev9

Kubernetes: v1.8.5
Docker: v17.03.2
VMs: irsawebdev9,10,11,12 Debian 8
irsawebdev9 -> master
others -> nodes (workers)

irsadmin@irsawebdev9:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
irsawebdev10 Ready <none> 10d v1.15.3
irsawebdev11 Ready <none> 10d v1.15.3
irsawebdev12 Ready <none> 10d v1.15.3
irsawebdev9 Ready master 10d v1.15.3

https://github.com/Caltech-IPAC/firefly/blob/53618ba5d60c81c2b26d0f3611b0f4384430e1b9/docker/k8s/firefly.yaml

	Intro to Kubernetes
	Problems
	Solution
	Kubernetes
	Slide Number 5
	Deployment
	IRSA UI use case

