

Distributed Development:
Lessons learned by Herschel
GRITS 2011, June 17

Colin Borys

 - page 2

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  Ground Segment Organizational chart
•  The Practical considerations
•  General Development Infrastructure
•  Inherent conflicts and how to cope
•  Summary of lessons learned

Overview

 - page 3

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

Organizational chart

Instrument Control
Centers (ICCs) Core

System

•  Each software area manages their own CCB (configuration
control board), which prioritizes work.

•  Each also has their own manager and software QA.

Archive

 - page 4

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  The System Architect, QA Engineer, and top level managers
define the entire development framework. Hire good ones!

•  With developers spread across ~15 timezones, interaction is a
challenge:

•  With Europe, we generally have telecons at their end of day/
our start of day. (6am)

•  NHSC also has a representative onsite at ESAC (Madrid) to
represent us at other meetings. (David Ardilla)

•  The emergence of social networking, SKYPE, and now webex
are also invaluable

Practical Considerations

 - page 5

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  IDE: Eclipse. Common, powerful, and has the ability to import
project-specific plug-ins to aid in development conformity

•  Code Repository: CVS. Old, but it works.
•  Ticketing System: JIRA. Very effective, very configurable.
•  Compilation: CIB (Continuous Integration Build) approach.
•  Testing: Test harnesses, nightly tester, once per release

acceptance testing.

Development Infrastructure

 - page 6

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

(some) Lessons Learned

 - page 7

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

(some) Lessons Learned

 - page 8

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

JIRA workflow for a person who submits a ticket

User submits a ticket

Developer analyzes issue
Developer starts

implementation
Developer fixes issue

User tests implementation

Ticket appears on users’ ‘submitted by me’ panel
Ticket appears on developer’s ‘assigned to me’ panel
Ticket status is ‘Assigned’

Ticket status is changed to ‘In Analysis’
Ticket status is changed to ‘In Implementation’

Ticket status is changed to ‘Resolved’
Ticket disappears from developer’s panel
Ticket appears on users’ ‘to be closed by me’ panel

If test passed, user sets the ticket to ‘Completed’ and

the workflow is complete.

E-mail is sent to assignee, developer, and mentor at each step

 - page 9

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  In our setup, the person who submits a bug report is also
responsible for testing and closing the ticket once a developer
fixes it.

•  We do not release software when a ticket assigned to that
version is ‘resolved’ but not closed.

•  It is natural for a lot of development to happen near a code
freeze, thus the testing duties for reporters get compressed.

•  Consequence is that people who report bugs are inherently
punished and this provides some motivation to work ‘outside’ the
system.

Consequences of JIRA workflow policy

 - page 10

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

The HIPE ticketing
interactions

JIRA Helpdesk HSC/ICC/NHSC

Astronomers
and User
Groups

Developers

•  The user base cannot directly submit
tickets, but overhead on developers is
lower.

•  Increased need for calibration scientists
to interact with community.

 - page 11

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  HIPE is made up of >100 component packages (i/o, numerical,
etc.)

•  For each, there is a developer (or more) and mentor assigned.
•  The majority of the packages have a calibration scientist as a

mentor, and it is their job to :
•  Advise developer on astronomer specific issues
•  Vet tickets that are incorrectly assigned to a package
•  Advise management on the priority of tickets in that package.
•  Aid in documentation that is directed towards users.

•  Good idea but can fail in practice (over tasked, lack of expertise
for shared packages with a broad user base, ignored)

The Developer-Mentor policy

 - page 12

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  HIPE takes a long time to compile, and it used to be possible for
conflicts to occur on packages under heavy development.

•  Was particularly problematic around a code freeze.

•  With a CIB, a new minor version of the software is created every
time new code in a component is checked in. Therefore changes
in package Y are immune to changes in X if Y is checked in first.

•  Any code that does break the build becomes ‘quarantined’, and
the owners of X and Y figure out why, and fix it.

Continuous Integration Builds

 - page 13

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

 - page 14

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

 - page 15

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

 - page 16

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  Occurs at many levels, the first being the code test harnesses
associated with each component. This is easily one of the most
controversial areas we deal with.

•  Scripts designed to run the system in many different areas are
automated once per night and the output compared to an
expected value. This catches bugs that don’t break the build but
do break the system. However does not test as much code as the
test harnesses.

•  Finally, every major release goes through extensive acceptance
testing.

Software testing

 - page 17

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  Developers and Astronomers often have a different view on how
things should be implemented. Data access in HIPE for example
is sophisticated and powerful, but until recently only expert
Astronomers could actually read in data easily!

•  The US mandate is to support the US Astronomer. The

European one also includes development of HIPE for future ESA
missions. Code quality reviews places NHSC in a difficult
position.

Inherent conflicts

 - page 18

GRITS 2011
June 16/17

PACS

NASA Herschel
 Science Center

•  Know your colleagues, figure out who they work for, and what
they are hired to do.

•  Don’t let developers write requirements, but don’t let astronomers
limit developers.

•  Pair developers with calibration scientists
•  Hire good people at the top
•  Embrace new technologies/approaches (i.e. social media, CIB)
•  Purchase good development tools.
•  Monitor policy decisions…they often have unintended side-

effects
•  Emphasize testing at every opportunity, but be flexible.
•  No amount of requirement or policy planning will prevent conflict.

(some) Lessons learned

