
Managing Open Source Software on
Workstations and Clusters

Theodore Kisner, LBNL

T. Kisner, LBNL - GRITS 6/17/2011

Why Use Open Source Software (OSS)?

Many useful tools for data processing and visualization

Quality is usually good

FREE! (as in purchase price == $0.00)

No vendor lock-in

Some people like the philosophy...

Direct contact with developers if there are problems-
even if you don’t have a costly support contract.

T. Kisner, LBNL - GRITS 6/17/2011

Challenges

For some specialized software needs or usage cases,
OSS might not be sufficient (e.g. you require specific
features that are not mainstream)

Installation

Where do I find the software?

How do I put it on my computer?

How do I get rid of it later if I change my mind?

How do I upgrade to newer versions of the software?

T. Kisner, LBNL - GRITS 6/17/2011

Installation

Binary package managers (APT, yum, zypper)

Source-based package managers (portage, BSD ports,
macports)

“Roll your own”: manually download the sources and
compile on your computer

Dependencies checked automatically,
official builds, good chance of working

Concrete Example: we want to install “matplotlib”
to make plots from within python...

T. Kisner, LBNL - HiPACC 12/16/2010

Binary Package Management (Ubuntu)

Search for what you want:

$> aptitude search matplotlib
p python-matplotlib - Python based plotting system similar to Matlab
p python-matplotlib-data - Python based plotting system (data package)
p python-matplotlib-dbg - Python based plotting system (debug extension)
p python-matplotlib-doc - Python based plotting system (documentation package)
v python2.6-matplotlib -
v python2.7-matplotlib -

And... Install it!

$> aptitude install python-matplotlib
The following NEW packages will be installed:
 blt{a} python-dateutil{a} python-matplotlib python-matplotlib-data{a}
 python-pyparsing{a} python-tk{a} python-tz{a} tcl8.5{a} tk8.5{a} ttf-lyx{a}
0 packages upgraded, 10 newly installed, 0 to remove and 34 not upgraded.
Need to get 7,903 kB of archives. After unpacking 28.9 MB will be used.
Do you want to continue? [Y/n/?]

T. Kisner, LBNL - HiPACC 12/16/2010

Binary Package Management (Ubuntu)
Dependency tracking

T. Kisner, LBNL - HiPACC 12/16/2010

Binary Package Management (Ubuntu)
Dependency tracking

T. Kisner, LBNL - GRITS 6/17/2011

Binary Package Management (Ubuntu)

Other tools to track which packages were install
automatically and remove if no longer needed in the
future.

In a binary package management scheme, all the time-
consuming building of packages is done on servers
somewhere else!

Scenario: developer uploads new source code to build
server. Code is built automatically. After testing, it is
available for you to download as an upgrade.

T. Kisner, LBNL - HiPACC 12/16/2010

Source Package Management (Macports)

Search for what you want:

$> port search matplotlib
py-matplotlib @0.99.0 (python, graphics, math)
 matlab-like syntax for creating plots in python
py-matplotlib-basemap @0.99.4 (python, graphics, math)
 matplotlib toolkit for plotting data on map projections
py25-matplotlib @1.0.1 (python, graphics, math)
 matlab-like syntax for creating plots in python
py25-matplotlib-basemap @1.0.1 (python, graphics, math)
 matplotlib toolkit for plotting data on map projections
py26-matplotlib @1.0.1 (python, graphics, math)
 matlab-like syntax for creating plots in python
py26-matplotlib-basemap @1.0.1 (python, graphics, math)
 matplotlib toolkit for plotting data on map projections
py27-matplotlib @1.0.1 (python, graphics, math)
 matlab-like syntax for creating plots in python
py27-matplotlib-basemap @1.0.1 (python, graphics, math)
 matplotlib toolkit for plotting data on map projections
Found 8 ports.

T. Kisner, LBNL - HiPACC 12/16/2010

Source Package Management (Macports)

And... install it!

$> port install py27-matplotlib
---> Computing dependencies for py27-matplotlib
---> Dependencies to be installed: py27-configobj py27-dateutil py27-tz py27-
pyobjc-cocoa py27-pyobjc py27-py2app py27-bdist_mpkg py27-macholib py27-
modulegraph py27-altgraph py27-tkinter
---> Fetching py27-configobj
---> Attempting to fetch configobj-4.6.0.zip from http://cdnetworks-
us-2.dl.sourceforge.net/configobj
---> Verifying checksum(s) for py27-configobj
---> Extracting py27-configobj
---> Configuring py27-configobj
---> Building py27-configobj
---> Staging py27-configobj into destroot
---> Installing py27-configobj @4.6.0_0
---> Activating py27-configobj @4.6.0_0
---> Cleaning py27-configobj
---> Fetching py27-tz
 <SNIP> (more downloading, compiling, laptop churning, etc) <SNIP>
---> Installing py27-matplotlib @1.0.1_1+tkinter
---> Activating py27-matplotlib @1.0.1_1+tkinter
---> Cleaning py27-matplotlib

T. Kisner, LBNL - GRITS 6/17/2011

Why “Roll Your Own” Software Install?

No package exists from the OS distribution, or existing
package is too old

Need to compile the software with non-standard
options.

You don’t have root access and the administrators are
unresponsive (this will never happen!)

Where to start: Decide what software you want and
how it is going to be used- this will determine the best
place to install.

Software that you want

Can all
dependencies be

installed by a
package manager?

Compile and install in standard place
(e.g. /usr/local)

YES

NO

Are you willing to use
only the “latest”

versions of all tools?

Compile and install to a fixed, custom
location (e.g. /usr/local/software)

YES

NO

Make list of all dependencies
and their relationships and

save it somewhere!

Do you want to “mix
and match” versions
of dependencies?

Install every version of every package to its own
directory (e.g. /usr/local/software/python-2.7.1).
Use “modules” to swap between the versions.

YES

NO

Make directory for each “snapshot” of all package
versions (e.g. /usr/local/software_20110617).
Change values of PATH, LD_LIBRARY_PATH,

MANPATH, etc when you want to switch between
them.

T. Kisner, LBNL - GRITS 6/17/2011

Details of Software Building

Remember: YOU are the package manager

Look at all the dependencies and sketch out a picture
of which tools depend on which.

Download all the source tarballs. Start at the lowest
level tools and work up the dependency chain.

Use the same compiler version for all software. Record
how you called “configure” for each piece of software
and / or any edits to Makefiles, etc that you did.

If you upgrade one tool, recompile anything that
depends on it.

T. Kisner, LBNL - GRITS 6/17/2011

Considerations for Multi-user Systems

If you break things, more than one person will complain!

Use local disk for compilation (faster; no risk of clock
skew), and install to shared filesystems if desired.

When “rolling your own” and upgrading some of the
software, rebuild everything and install to a new prefix.
Then swap environment variables to the new location.

Can use “modules” to allow users to load old versions of
software for debugging / validation.

T. Kisner, LBNL - GRITS 6/17/2011

Conclusions

Use the recommended package management system(s)
for your platform when ever possible!

Manual installation of large software packages with many
dependencies is painful.

It would be nice to have a source-based package
manager that would work across all UNIX systems,
similar to FreeBSD Ports / Macports.

