

A Very Brief Introduction To Cloud Computing

Jens Vöckler, Gideon Juve, Ewa Deelman, G. Bruce Berriman

What is "The Cloud"

Cloud computing refers to logical computational resources accessible via a computer network.

SaaS: Software As A Service (e.g. Google docs)

PaaS: Platform As A Service (laaS + core software; e.g. AppEngine)

laaS: Infrastructure As A Service (e.g. Get Cycles with Web API for Cash)

Clusters are still a crucial concept.

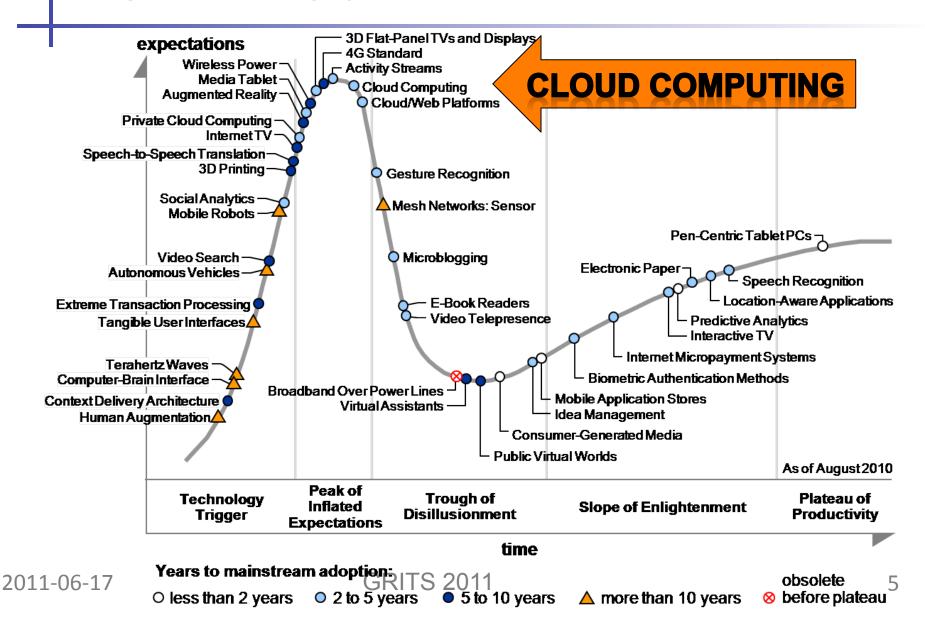
Examples for XaaS

- Software as a Service (Saas):
 - Google docs
 - MapReduce (Hadoop)
- Platform as a Service (PaaS):
 - Google App Engine
 - Microsoft Azure
- Infrastructure as a Service (laaS):
 - Amazon Web Services (EC2)
 - FutureGrid

Of Grid, Clouds and HPC

Grids

- Pioneered the service model.
- Latency intrinsic to distributed systems.
- Less suitable for differential equations.
- Dependent on remotely installed software stack.


Clouds

- Elasticity on demand.
- Poor locality (affinity) affects sci. comp.
- Even less suitable for differential equations.
- Ship all your software with your image.
- MapReduce and GFS.

HPC

Best suited for differential equations and tight MPI.

Is It A Fad?

When To Use Clouds

- Individual projects with bursty needs.
- High-Throughput Applications with modest data needs.
- Infrastructure-challenged sites.
- Undetermined or volatile needs.

(see also: "Other Considerations" later)

2010 Top Cloud Providers

- 1. Amazon Web Services (IaaS)
- 2. Rackspace (laaS)
- 3. Salesforce.com (SaaS or PaaS)
- 4. Google App Engine (PaaS)
- Microsoft Azure (PaaS)
- 6. Joyent (laaS)
- 7. GoGrid (laaS)

According to searchcloudcomputing.techtarget.com

Software Offers

Amazon

- Linux + Windows VMs
- Variety of storage, network, compute svcs
- Two dozen additional services, i.e.
 - Some business oriented like payment, CDN, DNS
 - Some useful for science like RDS, messaging, queues, MR, EBS
 - Mechanical Turk

Rackspace

- Linux + Windows VMs
- Variety of storage, network, compute svcs
- Smaller set of additional services, i.e.
 - Object storage
 - Load balancing
 - Elastic web hosting (like Google App Engine)

Support

Amazon

- Basic technical support in forums.
- Slow response time to forum questions.
- Or paid support
 - Lowest level starts at \$50 / month for 12 hour response time

Rackspace

- 24/7/365 support
- Phone, email, ticket
- Included in service charges
- Industry leader in cloud support

How Do I Get Started

- 1) You need a web browser
- 2) And a credit card

How Much Does It Cost 1/3

- 1 Computing per hour
 - Region: us east, us west, eu, ...
 - Service: on-demand, spot, reserved
 - OS: Linux, Windows
 - Node capacity: m1.large, ...

US-east on-demand Linux m1.large

• \$0.34 / h

How Much Does It Cost 2/3

- 2 Networking per GiB and month
 - → Data going in: \$0.10 / GiB
 - ← Data coming **out**:
 - 0 .. 1 GiB: \$0
 - < 10 **T**B: \$0.15 / GiB \leftarrow max: use for estimates
 - 11.. 49 TB: \$0.11 / GiB
 - 50 .. 149 TB: \$0.09 / GiB
 - > 150 TB: \$0.08 / GiB

How Much Does It Cost 3/3

- 3 Storage per GiB and month
 - EBS: \$0.10 / GiB * month
 - S3: \$0.15 / GiB * month

More Grids and Clouds

	Grids	Clouds
Problems	Too few cycles, too long queues	Too many users, too much data
Infrastructure	Clusters, supercomputers	Clusters, data centers
Architecture	Federated virtual organization	Hosted organization
Programming Model	MPI: Powerful but difficult	MapReduce: Less powerful yet simple

Other Considerations 1/4

- Security
 - Is your data yours? Safe in transit? OK that is "shares" space with strangers?
- Vendor lock-in
 - No standards (yet)
 - Using vendor services → dependency
- Efficacy
 - Benchmark machine types to find costperformance optimum for your application.

Other Considerations 2/4

- Use caching (reduce transfer-\$\$)
 - Transfer data once and store it for a month.
 - Reuse during the month many times.
- Consider your time-line
 - Clouds are good for short-term needs
 - Or highly bursty cycle requirements
 - Long-term better invest in your own HW
- Deploying distributed applications
 - RightScale, Chef, Puppet (,Wrangler)

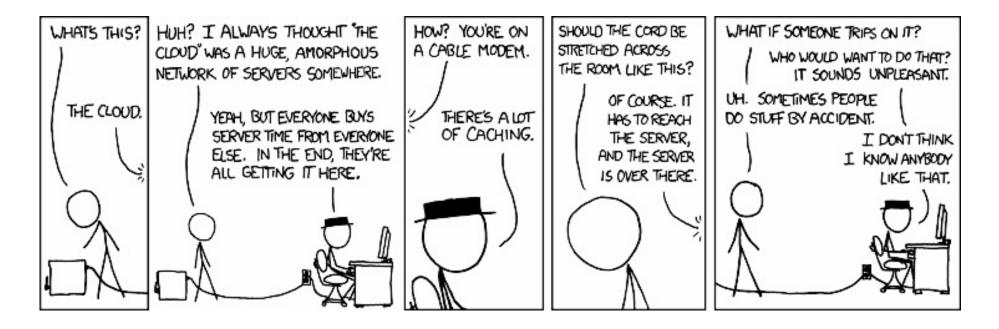
Other Considerations 3/4

- System administration
 - Clouds: Onus is on you to get it right
 - How well do you know Linux sys admin tasks?
 - Or will you have to pay someone?
 - HPC/Grids: Remote admin responsibility
- Overhead
 - Virtualization slower than bare metal
 - Commodity Gig-E versus Myrinet et. al.
 - Amazon CC solves some of it, but \$\$\$

Other Considerations 4/4

- Application size
 - Good fit: 1,000...10,000 CPU hours
 - >10k CPU hours: Put costs into budget
 - Maybe HPC elsewhere a better fit?
- No queue
 - Cloud is a finite resource
 - No queuing, just error "no capacity"
 - Happy retrying...
 - HPC can achieve 90% resource utilization

Cloud Comparison


- Compare academic and commercial clouds
 - NERSC's Magellan cloud (Eucalyptus)
 - Amazon's cloud (EC2), and
 - FutureGrid's sierra cloud (Eucalyptus)
- 16k Kepler Periodograms with plavchan
- Constrained node- and core selection
 - Because AWS costs \$\$
 - 6 nodes, 8 cores each node

Cloud Comparison II

Site	CPU	RAM (SW)	Walltime	Cum. Dur.	Speed-Up
Magellan	8 x 2.6 GHz	19 (0) GB	5.2 h	226.6 h	43.6
Amazon	8 x 2.3 GHz	7 (0) GB	7.2 h	295.8 h	41.1
FutureGrid	8 x 2.5 GHz	29 (½) GB	5.7 h	248.0 h	43.5

- Given 48 physical cores
 - Speed-up ≈ 43 considered pretty good
- AWS cost ≈ \$31
 - 7.2 h x 6 x c1.large ≈ \$29
 - 1.8 GB in + 9.9 GB out ≈ \$2

http://xkcd.com/908/

(There's planned downtime every night when we turn on the Roomba and it runs over the cord.)

Acknowledgements

- Gideon Juve,
- Bruce Berriman,
- Ewa Deelman,
- Shane Canon (NERSC)

http://pegasus.isi.edu/

Common Misconceptions

Shane Canon, "Debunking Some Common Misconceptions..." Talk during ScienceCloud HPDC 2011

- "Clouds are simple to use and don't require system administrators."
 - laaS VMs must be customized for app.
 - No batch system. No global file system.
 - Users must secure images, resources.
 - Require significant amount of System Administrative experience.

Common Misconceptions

- "My job will run immediately."
 - The cloud is, in the end, a finite resource.
 - Scientific applications will always need more resources.
- "Clouds are more efficient."
 - Virtualization less efficient than bare metal.
 - Amazon EC2 is 2...50 times slower on variety of benchmarks run by NERSC.
 - Though Amazon CC looks reasonable.

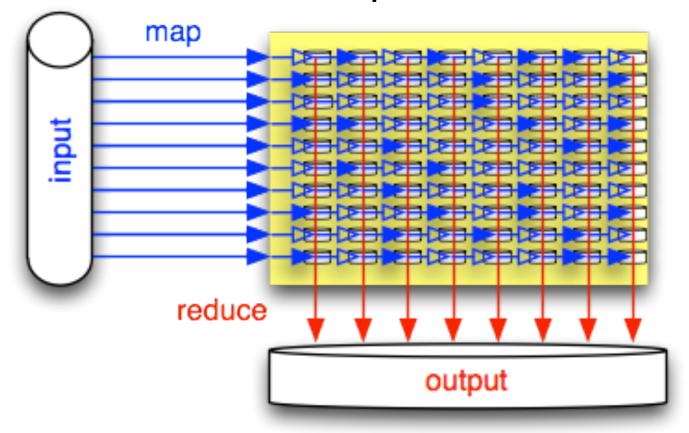
Common Misconceptions

- "Clouds allow you to ride Moore's Law without additional investment."
 - EC2 price has dropped 18% in 5 years.
 - But cores per socket (at same \$\$) have increased two- to five-fold in 5 years.

Cloud Computing is a Business Model.

A Word About MapReduce

- (Patented) framework
 - Based on functional programming
 - Introduced by Google in 2004
 - Key-value pairs and lists as key data structures
 - Very useful for language applications
 - Scalability and Fault-tolerance "built-in"


"If you only have a hammer, the world consists of nails"

A Word About MapReduce

- Fault Tolerance and Scalability, because map and reduce are
 - Typically small,
 - Stateless (functional paradigm),
 - Perform I/O with disk,
 - Replicated blocks file system
 - Run in parallel, and
 - Create independent results.
- Reduce can only start after all Map have finished.

MapReduce

You can unroll MapReduce for HPC

