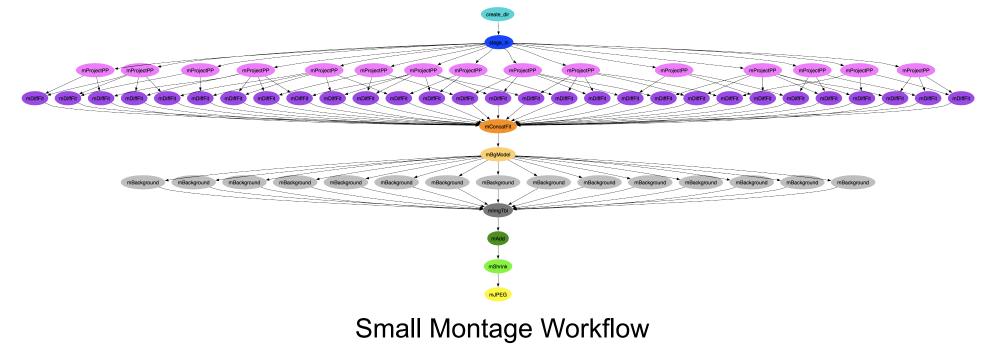


#### Scientific Workflows and Cloud Computing

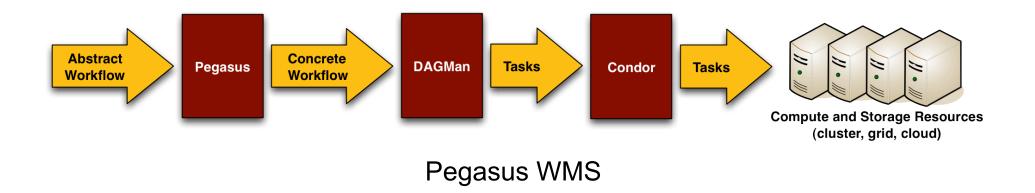
#### Gideon Juve USC Information Sciences Institute gideon@isi.edu








#### Scientific Workflows


- Loosely-coupled parallel applications
- Expressed as directed acyclic graphs (DAGs)
   Nodes = Tasks, Edges = Dependencies
- Data is communicated via files





# Workflow Management System

- Pegasus workflow planner
  - Efficiently maps tasks and data to resources
- DAGMan workflow engine
  - Tracks dependencies, releases tasks, retries tasks
- Condor task manager
  - Dispatches tasks (and data) to resources





## Amazon Web Services (AWS)

- IaaS Cloud
- Services
  - Elastic Compute Cloud (EC2)
    - Provision virtual machine instances
  - Simple Storage Service (S3)
    - Object-based storage system
    - Put/Get files from a global repository
  - Elastic Block Store (EBS)
    - Block-based storage system
    - Unshared, SAN-like volumes
  - Others (queue, key-value, RDBMS, MapReduce, etc.)





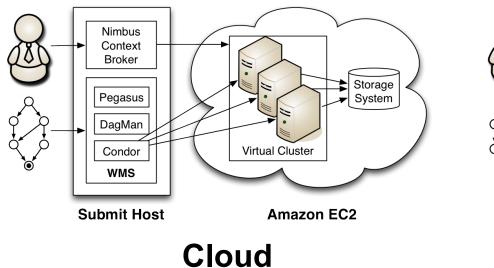
#### Workflows and Clouds

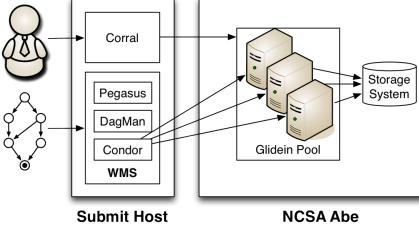
- Benefits
  - User control over environment
  - On-demand provisioning / Elasticity
  - SLA, support, reliability, maintenance
- Drawbacks
  - Complexity (more control = more work)
  - Cost
  - Performance
  - Resource Availability
  - Vendor Lock-In



#### **Questions About Clouds**

- How can we deploy workflows in the cloud?
  - Install and configure software
  - Execute workflow tasks
  - Store workflow data
- How well do workflows perform in the cloud?
  - Compared to grids and clusters
  - Using various storage systems
- How much does it cost to run a workflow?
  - To provision resources
  - To store data
  - To transfer data





# **Deploying Workflows in the Cloud**

- Virtual Machines/Virtual Machine Images
  - Clouds provide resources, but the software is up to the user
- Virtual Clusters
  - Collections of virtual machines used together
  - Configured to mimic traditional clusters
- Contextualization
  - Dynamically configuring virtual clusters is not trivial
  - Nimbus Context Broker automates provisioning and configuration of virtual clusters



#### **Execution Environment**





Grid



# Workflow Storage In the Cloud

- Executables
  - Transfer into cloud
  - Store in VM image
- Input Data
  - Transfer into cloud
  - Store in cloud
- Intermediate Data
  - Use local disk (single node only)
  - Use distributed storage system
- Output Data
  - Transfer out of cloud
  - Store in cloud



# **Resource Type Experiments**

- Run workflows on single instances of different resource types (using local disk)
- Goals:
  - Compare performance/cost of cloud resources
  - Compare performance of grid and cloud
  - Characterize virtualization overhead
  - Quantify performance benefit of network/file system

| Туре       | Arch.  | CPU                 | Cores | Memory | Network            | Storage    | Price      |
|------------|--------|---------------------|-------|--------|--------------------|------------|------------|
| m1.small   | 32-bit | 2.0-2.6 GHz Opteron | 1/2   | 1.7 GB | 1-Gbps Ethernet    | Local disk | \$0.085/hr |
| m1.large   | 64-bit | 2.0-2.6 GHz Opteron | 2     | 7.5 GB | 1-Gbps Ethernet    | Local disk | \$0.12/hr  |
| m1.xlarge  | 64-bit | 2.0-2.6 GHz Opteron | 4     | 15 GB  | 1-Gbps Ethernet    | Local disk | \$0.68/hr  |
| c1.medium  | 32-bit | 2.33-2.66 GHz Xeon  | 2     | 1.7 GB | 1-Gbps Ethernet    | Local disk | \$0.17/hr  |
| c1.xlarge  | 64-bit | 2.33-2.66 GHz Xeon  | 8     | 7.5 GB | 1-Gbps Ethernet    | Local disk | \$0.68/hr  |
| abe.local  | 64-bit | 2.33 GHz Xeon       | 8     | 8 GB   | 10-Gbps InfiniBand | Local disk | N/A        |
| abe.lustre | 64-bit | 2.33 GHz Xeon       | 8     | 8 GB   | 10-Gbps InfiniBand | Lustre     | N/A        |

#### **Resource Types Used**



# Storage System Experiments

- Investigate different options for storing intermediate data in a virtual cluster
- Goals
  - Determine how to deploy storage systems
  - Compare performance/cost of storage systems
  - Determine which storage system
- Amazon Issues
  - EC2 does not allow kernel patches (no Lustre, Ceph)
  - EBS volumes cannot be shared between nodes
- Use c1.xlarge resources



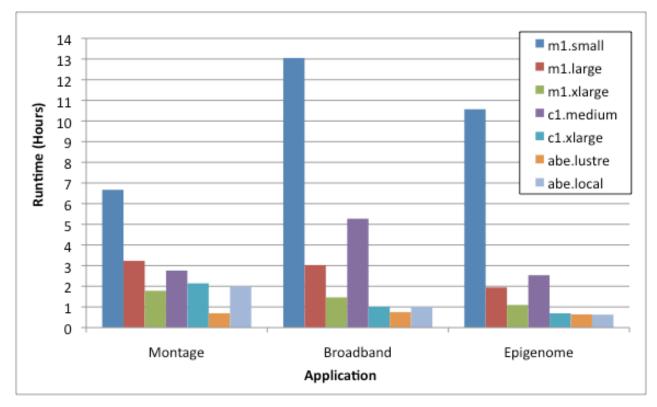
# Storage Systems

- Local Disk
  - RAID0 across available partitions with XFS
- NFS: Network file system
  - 1 dedicated node (m1.xlarge)
- PVFS: Parallel, striped cluster file system
  - Workers host PVFS and run tasks
- GlusterFS: Distributed file system
  - Workers host GlusterFS and run tasks
  - NUFA, and Distribute modes
- Amazon S3: Object-based storage system
  - Non-POSIX interface required changes to Pegasus
  - Data is cached on workers



# **Example Applications**

- Montage (astronomy)
  - I/O: High
  - Memory: Low
  - CPU: Low
- Epigenome (bioinformatics)
  - I/O: Low
  - Memory: Medium
  - CPU: High
- Broadband (earthquake science)
  - I/O: Medium
  - Memory: High
  - CPU: Medium

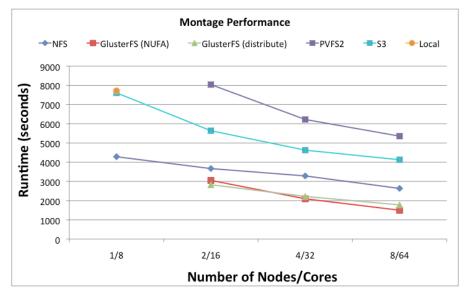




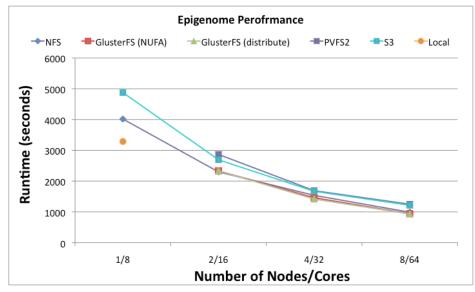


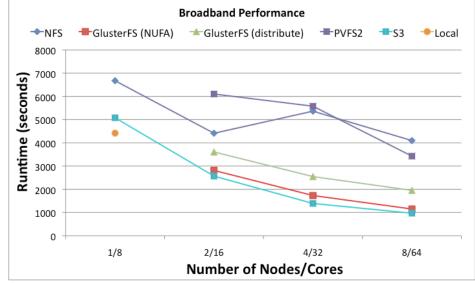



#### **Resource Type Performance**




- Virtualization overhead is less than 10%
- Network/file system are biggest advantage for grid


- c1.xlarge is good, m1.small is bad
- Montage (high I/O) likes Lustre, Epigenome (high CPU) doesn't care



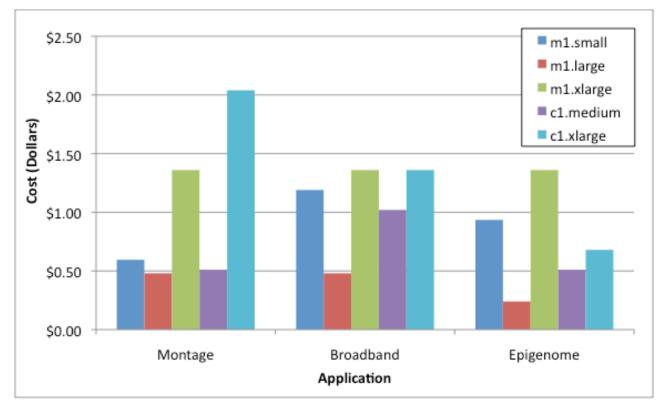

## Storage System Performance



- GlusterFS (NUFA) is best overall
- Epigenome file system doesn't matter
- NFS, PVFS perform relatively poorly
- S3 performs poorly when reuse is low, and # files is large





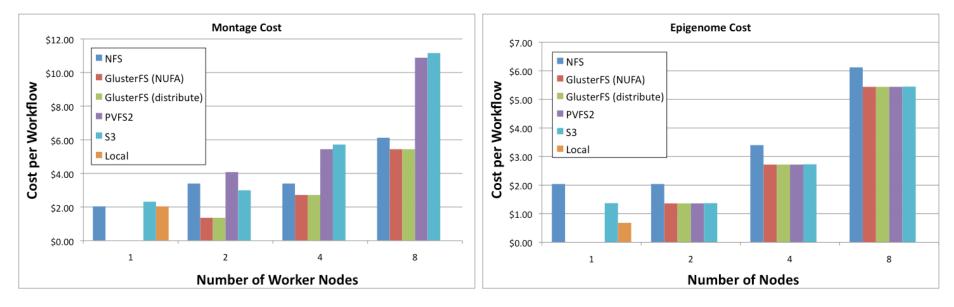



#### **Cost Components**

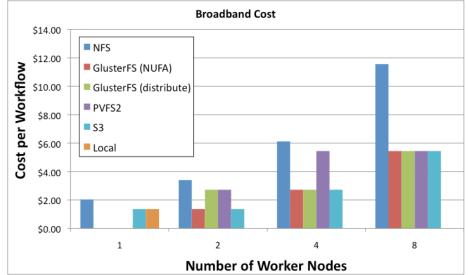
- Resource Cost
  - Cost for VM instances
  - Billed by the hour
- Transfer Cost
  - Cost to copy data to/from cloud over network
  - Billed by the GB
- Storage Cost
  - Cost to store VM images, application data
  - Billed by the GB-month, # of accesses



# Resource Cost (by Resource Type)




- The per-workflow cost is not bad
- m1.small is not the cheapest
- m1.large is most cost-effective
- Resources with best performance are not cheapest
- Per-hour billing affects price/ performance tradeoff


#### **University of Southern California**



## Resource Cost (by Storage System)



- Cost tracks performance
- Adding resources does not reduce cost (except in unusual cases)
- S3, NFS are at a disadvantage because of extra charges





#### **Transfer Cost**

| Application | Input   | Output  | Logs   |
|-------------|---------|---------|--------|
| Montage     | 4291 MB | 7970 MB | 40 MB  |
| Broadband   | 4109 MB | 159 MB  | 5.5 MB |
| Epigenome   | 1843 MB | 299 MB  | 3.3 MB |

| Application | Input  | Output | Logs     | Total  |
|-------------|--------|--------|----------|--------|
| Montage     | \$0.42 | \$1.32 | < \$0.01 | \$1.75 |
| Broadband   | \$0.40 | \$0.03 | < \$0.01 | \$0.43 |
| Epigenome   | \$0.18 | \$0.05 | < \$0.01 | \$0.23 |

**Transfer Sizes** 

**Transfer Costs** 

- Cost of transferring data to/from cloud
  - Input: \$0.10/GB (first 10 TB, free till June 30)
  - Output: \$0.17/GB (first 10 TB, now \$0.15)
- Transfer costs are a relatively large
  - For Montage, transferring data costs more than computing it
- Costs can be reduced by storing input data in the cloud and using it for multiple workflows



#### Storage Cost

- Storage Charge
  - Price for storing data
  - Per GB-month
- Access Charge
  - Price for accessing data
  - Per operation

- S3
  - Storage: \$0.15 / GB-month
  - Access: PUT: \$0.01 / 1,000
  - GET: \$0.01 / 10,000
- EBS
  - Storage: \$0.10 / GB-month
  - Access: \$0.10 / million IOs

| Application | Volume Size | Monthly Cost |
|-------------|-------------|--------------|
| Montage     | 5GB         | \$0.66       |
| Broadband   | 5GB         | \$0.60       |
| Epigenome   | 2GB         | \$0.26       |

 Image
 Size
 Monthly Cost

 32-bit
 773 MB
 \$0.11

 64-bit
 729 MB
 \$0.11

Storage of Inputs in EBS

Storage of VM images in S3



#### Conclusions

- Deployment and Usability
  - Easy to start using, but some work is required to generate images and automate configuration
  - Tools like Nimbus Context Broker can help
  - Little maintenance, good reliability
- Performance
  - Not bad given resources, but not as good as dedicated clusters & grids
  - VM overhead is less than 10% for apps tested
  - c1.xlarge has best performance overall
  - Avoid using m1.small



#### Conclusions

- Cost
  - m1.small is not always the cheapest resource
  - Transferring data is relatively expensive
  - Store inputs long-term if possible
  - Using multiple nodes is not cost-effective



#### Web Resources

- Pegasus
  - http://pegasus.isi.edu
- Condor/DAGMan
  - http://cs.wisc.edu/condor
- Nimbus Context Broker
  - http://www.nimbusproject.org/
- Amazon Web Services
  - http://aws.amazon.com