
Natural programming in Python
for scientific applications:
the case of the Mock LISA Data Challenges

Michele Vallisneri
Jet Propulsion Laboratory

Copyright 2010 California Institute of Technology

Einstein’s general relativityGravitational-wave astronomy

I should first establish my credentials to talk about:

...that form in-spiraling binaries.Such as black holes...

Gravitational waves are propagating fluctuations of spacetime curvature,
emitted by massive bodies in rapidly accelerated motion...

...and detected as transverse
oscillations in the distance
between test masses.

Gravitational waves...

• have typical strength 10–21

• interact weakly with matter
• are emitted by bulk motions
• are phase coherent
• Detectors are omnidirectional and

do not form images

5

• LISA science received the highest ranking in the NRC Beyond Einstein review

NRC: “LISA [is] an entirely new way of observing the universe,
with immense potential to enlarge our understanding of both physics
and astronomy in unforeseen ways”

• LISA will detect and characterize many thousands of individual GW sources, as well as
the diffuse background from millions more

MBH mergers
• study the coevolution of galaxies and MBHs
• measure accurate distances of high-z objects
• test GR in the nonlinear regime

Galactic binaries
• study the astrophysics of binary stellar evolution,

including the common envelope phase

extreme–mass-ratio inspirals (EMRIs)
• study MBHs and their environment in the dense

nuclei of galaxies
• map BH spacetimes and test cosmic censorship

bursts and stochastic backgrounds
• look for new physics from the early Universe

and string theory?

6

GW signals are (mostly) submerged in detector noise:
source detection and parameter estimation are never trivial, and always fun.
(See MV, Class. Quant. Grav. 26, 094024, for a nonpractitioner’s intro.)

Most LISA sources are long-lived,
so LISA data analysis poses the
cocktail-party problem of separating and
reconstructing 1000s simultaneous signals

The most precise weapon in GW data
analysis is matched filtering—computing
the cross-correlation of detector data with
“all possible” theoretical waveform shapes

When GW signals are not sufficiently separated (e.g., Galactic binaries
at nearby frequencies), they must be fit simultaneously

7

Iterative strategy 1. Find the strongest source, and add it to the catalog;
 2. Simultaneously re-fit parameters for all the sources in catalog;
 3. Subtract the catalog sources from detector data;
 4. Repeat

Global strategy Sample the global multi-source parameter space à la Monte Carlo.
 (Many jumping tricks may be required for good mixing;
 it is however sufficient to fit together blocks of tens of Galactic binaries.)

Cornish and Crowder’s block-fitting
Markov-Chain Monte Carlo (2007)
successfully recovered 20,000
Galactic binaries from a simulated
population of 30 million

8

And also:
Quasi-degeneracies:	 e.g., MBH binaries at antipodal sky positions
Sorting problem: in a multi-modal, multi-source posterior probability distribution,
 which source is which in each mode?

[C
ro

w
de

r
20

07
]

However, in some cases we must accept ambiguous results!

Template blending:multiple templates
 match a single true source

Source blending:multiple sources
 matched by a single template

5

Phase I (MLDC 1, 1B): establish common standards for the LISA orbits, noises, response.
2006–2007 Test recovery and parameter estimation of simple sources:

To develop our tools and methods, we started the Mock LISA Data Challenges:

Phase II (MLDC 2, 3): test recovery and parameter estimation of astrophysical sources:
2007–2008

• Galactic binaries (verification, isolated, moderately interfering)
• isolated, nonspinning SMBH binaries

• 30 million interfering Galactic binaries
• nonspinning/spinning SMBH binaries (on top of Galaxy confusion)
• extreme–mass-ratio inspirals (EMRIs)
• cosmic-string bursts; stochastic backgrounds

Phase III (MLDC 4, 5): face global-fit problem; analyze real-world data with non-ideal noise
2009–

	 	 So far: 70 participants from 25 institutions, 30+ papers

• issue simulated datasets with synthetic noise and GWs of undisclosed parameters
• participating groups return parameter estimates and compare methods

So how did we make this in 3 months? With Python.

• Reading and writing a custom data format
for challenge solutions, intermediate files, final
datasets for distribution

• Wrapping existing C and C++ codes
for generating waveforms and noise,
and simulating the LISA response

• Scripting high-level science functions
• Steering (and installing!) the whole pipeline

m
as

te
r

P
yt

ho
n

sc
rip

t

Python wrappers

Python wrappers

Python script

Python script

Stand-alone
C/C++ code

Python module,
legacy C application

Generate random
GW source parameters

Compute gravitational
waveforms

Compute LISA response
and noises

Put everything together

lisaXML file

lisaXML file

lisaXML file

lisaXML file

Beautiful code and natural programming

For a scientist, code is beautiful when
• It expresses mathematical constructs clearly

and economically
• It represents the flow of information

transparently
• It enables simplicity and beauty as defenses

against complexity
• It “feels like home”

Python can help because
• It provides high-level math objects and

libraries (e.g., numpy)
• It is object-oriented, but casually so
• It is expressive (Python/C = 6) and

introspective
• It just feels right (but see the Zen of Python)

Mathematical constructs—side-by-side comparisons, code should be
transparently parallel; Fortran was formula translator
Flow of information—easy inspection by collaborators and by our
future selves
Simplicity and beauty—symmetry is a guiding principle for physicists...
easy to see when a crystal is broken
Feels like home—naturalness

Indeed, the Zen of Python could have been written by a physicist

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough
 to break the rules.

Although practicality beats purity.

...

Physicists try to build their own little experiment, isolated and
protected from the world...

Why XML?

• We figured a text-based format1 would be
reassuring to neophytes (easy to parse, less
dependent on I/O libraries)

• Thus, we eliminated standard binary2
formats for scientific data (HDF, FITS)

• XML offered ample I/O libraries,
self-describing data, and nice formatting in
web browsers with XSLT3 and Javascript

For our data format, we adopted CACR’s XSIL dialect of XML

What XML?

• XSIL (Extensible Scientific Interchange
Language), is a “flexible, hierarchical,
extensible transport language for scientific
data objects”

• It is based on eight simple XML elements
(XSIL, Param, Array, Table, Stream, ...)

• It is used (not well) in LIGO, and in a few
other CACR projects.

• It allows linking (even remote) of “raw”
floating-point data streams.

• If I had to do it again: probably the Virtual
Observatory’s VOTable.

1For our long time series, binary-file performance
was very desirable. Linked raw files + XML
headers offer the best of both worlds.
“Binary XML” formats (Fast Infoset, BiM, even
Protocol Buffers) really have different use cases.

2They all have XML implementations, but those
are mostly useful in transcoding...

3The nastiest language I’ve ever met. Turing-
complete, but boy you have to sweat it!

tim
e

se
rie

s
lin

ke
d

bi
na

ry
ar

ra
y

G
W

 s
ou

rc
es

so
ur

ce
 p

ar
am

et
er

s

<XSIL>
 <Param Name="Author">Michele Vallisneri</Param>

 <XSIL Type="SourceData">
 <XSIL Name="Binary-1.1.1a" Type="PlaneWave">
 <Param Name="SourceType">
 GalacticBinary
 </Param>
 <Param Name="EclipticLatitude" Unit="Radian">
 0.9806443268
 </Param>
 <Param Name="EclipticLongitude" Unit="Radian">
 5.088599
 </Param>
 <Param Name="Polarization" Unit="Radian">
 3.703239
 </Param>
 [...]
 </XSIL>
 [...]
 </XSIL>

 <XSIL Type="TDIData">
 <XSIL Name="t,Xf,Yf,Zf" Type="TimeSeries">
 <Param Name="TimeOffset" Type="Second">0</Param>
 <Param Name="Cadence" Unit="Second">15</Param>
 <Param Name="Duration" Unit="Second">60</Param>

 <Array Name="t,Xf,Yf,Zf" Type="double">
 <Dim Name="Length">4</Dim>
 <Dim Name="Records">4</Dim>

 <Stream Type="Remote" Encoding="Binary">
 examplefile-0.bin
 </Stream>
 </Array>
 </XSIL>
 </XSIL>
</XSIL>

XSIL source Firefox rendering (not really the same file...)

We then needed a natural interface for XML from Python

• We need to read, write, edit lisaXML files. Expressive data binding is crucial to natural scripts

• So we wrote our own intuitive IO interface to mirror the semantics of Python and lisaXML:
<Param>s → attributes; <Array>s → numpy arrays; <Table>s → iterators

• (DOM was too complicated... SAX too clumsy... we chose RXP—quick, simple, and a little dirty

<?xml version="1.0"?>

<XSIL>
 <Param Name="Author">
 Michele Vallisneri
 </Param>

<XSIL Type="SourceData">
 <XSIL Name="Galactic binary 1.1”
 Type="PlaneWave">
 <Param Name="SourceType">
 GalacticBinary
 </Param>
 <Param Name="EclipticLatitude"
 Unit="Radian">
 0.9806443268
 </Param>

 [...more Params...]
 </XSIL>

 [...more PlaneWave sources...]
 </XSIL>

>>> fileobj = lisaXML(‘test.xml’,’r’)
>>> fileobj
<lisaXML file 'test.xml'>
>>> fileobj.Author
'Michele Vallisneri’
>>> fileobj.SourceData
<XSIL SourceData (2 ch.)>
>>> gb = fileobj.SourceData[0]
>>> gb
<XSIL PlaneWave 'Galactic binary 1.1'>
>>> gb.Name
'Galactic binary 1.1.1a’
>>> gb.EclipticLatitude
0.9806443268
>>> gb.EclipticLatitude_Unit
‘Radian’
>>> gb.parameters
['EclipticLatitude', 'EclipticLongitude',
'Polarization', 'Frequency', 'InitialPhase',
'Inclination', 'Amplitude']

Armed with the lisaXML interface,
we used SWIG to wrap our legacy C/C++ code

• SWIG connects programs and libraries written in C/C++ with many high-level languages.

• It requires little boilerplate (but allows wrappers to do smart things) and has especially strong
Python integration, including numpy.

• This code is simple enough that it can be copied and adapted by non-Python savvy contributors

%module BBH
[...]
%include "BBHChallenge1.hh"

%pythoncode %{
import lisaxml, numpy

class BlackHoleBinary(lisaxml.Source):
 def waveforms(self,samples,deltat,inittime):

 bbh = BBHChallenge1(self.Mass1,self.Mass2,[...])

 hp = numpy.empty(samples,'d')
 hc = numpy.empty(samples,'d')

 bbh.ComputeWaveform(hp,hc,deltat,inittime)

 return hp,hc
%}

This is a SWIG interface module... it will create Python wrappers
for all classes declared in the C++ header BBHChallenge1.hh

All source classes inherit from lisaxml.Source, which
gives them access to lisaXML parameters

Initialize a source instance as we would in
C++, using a natural syntax for parameters

The only new method we need!

Then call the C++ code that generates waveforms
(using a little typemap magic to pass numpy arrays)

Last, we wrote Python scripts for high-level science functions,
to tie the pipeline together, and for a global installer script

• To:	write high-level science scripts: e.g., to choose GW-source parameters randomly

• Do:enjoy Python expressiveness and intuitive lisaXML interface:
 bbh.Longitude = random.uniform(0,2*pi)

• To:	wrap legacy applications that read and write from fixed filenames

• Do:“fool” the applications by symlinking them into temporary directories, renaming files

• To:	 tie command-line applications (e.g., to make source, LISA response) into pipeline

• Do:write a master script using Python’s OS, file-system and regex capabilities.
 Even throw in basic queueing/multiCPU functionality with Python’s subprocess

• To:	 implement a master installer (all libraries and codes) for helpless remote users

• Do:	let Python (not make!) do the wgets, run setup.py and configure/make/make install

So it’s almost like that...

• It’s important to have fun!

But:
• Choose your packages wisely
• Beware of kludges and hacks

(fix them before they bite you)
• Try to avoid most idioms

(e.g., sincx = x and sin(x)/x or 1)
• Document as you write (yeah, right)

And:
• Remember that scientists are not

native speakers of computer
languages

• Software-development theory
does not really apply to scientific
programming

Packages: numpy good, matplot lib bad (unsteady API)
Worst kind of hack: fixing somebody else’s package at runtime
Idioms: things that a non-native speaker cannot figure out logically

Non-native speakers: eventually we’ll make an embarassing mistakes
Software development for scientific programming—just do your best,
pick your examples

