Natural programming in
for scientific applications:
the case of the

Jet Propulsion Laboratory

Copyright 2010 California Institute of Technology

| should first establish my credentials to talk about:

Gravitational-wave Einstein’s

Gravitational waves are propagating fluctuations of spacetime curvature,
emitted by massive bodies in rapidly accelerated motion...

Such as black holes... ...that form in-spiraling binaries.

+ Polarization X Polarization

y y

...and detected as transverse
oscillations in the distance
between test masses.

Gravitational waves...

* have typical strength 102!
* interact weakly with matter
* are emitted by bulk motions
 are phase coherent

* Detectors are omnidirectional and
do not form images

: “LISA [is] an entirely new way of observing the universe,
with immense potential to enlarge our understanding of both physics
and astronomy in unforeseen ways”

LISA science received the in the NRC Beyond Einstein review

LISA will detect and characterize , as well as
the diffuse background from millions more

study the coevolution of galaxies and MBHs
measure accurate distances of high-z objects
test GR in the nonlinear regime

study the astrophysics of binary stellar evolution,
including the common envelope phase

look for new physics from the early Universe
and string theory

—_
=
>
= .
=
B
7]
=
o
L -
i
©
S
=
»
2
e
o
k-]

study MBHs and their environment in the dense
0.0001 0.001 0.01 0.1 nuclei of galaxies
Gravitational wave frequency (Hz) map BH spacetimes and test cosmic censorship

5

GW signals are (mostly)

source detection and parameter estimation are never

(See MV, Class. Quant. Grav. 26, 094024, for a nonpractitioner’s intro.)

10736

trivial, and always fun.

10738

1040

10742

1074

TDI X S(f) [1/Hz, one—sided]

1046

stochastic
background

everything

alactic instrument
inaries noise

(truncated

for legibility)

10748
1

05

f[Hz]

Most LISA sources are ,
s0 LISA data analysis poses the

of separating and
reconstructing 1000s simultaneous signals

SNR

Arb. Amplitude

Time
The most precise weapon in GW data
analysis is —computing
the cross-correlation of detector data with
“all possible” theoretical waveform shapes

When GW signals are not sufficiently separated (e.g., Galactic binaries
at nearby frequencies), they must be fit simultaneously

lterative strategy 1. Find the strongest source, and add it to the catalog;
2. Simultaneously re-fit parameters for all the sources in catalog;
3. Subtract the catalog sources from detector data;
4. Repeat

Global strategy Sample the global multi-source parameter space a la Monte Carlo.
(Many jumping tricks may be required for good mixing;
it is however sufficient to fit together blocks of tens of Galactic binaries.)

Cornish and Crowder’s block-fitting
Markov-Chain Monte Carlo (2007)
successfully recovered 20,000
Galactic binaries from a simulated
population of 30 million

1e-05 6.0001 0.001 6.01

However, in some cases we must accept ambiguous results!

3e-19

le-19

0.0003095 0.0003098 0.00031

Template blending: multiple templates
match a single true source

fe19 Signal ——
Residual ——
SNR 1 = 44.5 (in)
4e-19
3e-19
=
o
- =
P
[0
1e-19 _g
W\ A o
<
IV O
0.3555595 6,0003098 6,00031

Source blending: multiple sources

matched by a single template

And also:
Quasi-degeneracies: e.g., MBH binaries at antipodal sky positions
Sorting problem: in a multi-modal, multi-source posterior probability distribution,

which source is which in each mode?

To develop our tools and methods, we started the

issue simulated datasets with and GWs of
participating groups return parameter estimates and compare methods

(MLDC 1, 1B): establish for the LISA orbits, noises, response.
2006-2007 Test recovery and parameter estimation of :

Galactic binaries (verification, isolated, moderately interfering)
isolated, nonspinning SMBH binaries

(MLDC 2, 3): test of

2007-2008 30 million interfering Galactic binaries
nonspinning/spinning SMBH binaries (on top of Galaxy confusion)
extreme—-mass-ratio inspirals (EMRIs)
cosmic-string bursts; stochastic backgrounds

(MLDC 4, 5): face problem; analyze real-world data with non-ideal noise
2009-

So far: 70 participants from 25 institutions, 30+ papers

So how did

TDI X S(f) [1/Hz, one—sided]

10736

we make in 3 months? With Python.

10738

10740

10742

1074

stochastic
background

alactic
inaries

everything

instrument
noise

Generate random Python script
GW source parameters
lisaXML file
Compute gravitational Stand-alone
waveforms C/C++ code
Python wrappers
lisaXML file
(truncated
for legibility) Compute LISA response Python module,
and noises legacy C application
Python wrappers
lisaXML file i Ep
‘ Put everything together ‘ ‘ Python script ‘
_isaXML file

master Python script

1074

1073 1072 . .
flHz) Reading and writing a

for challenge solutions, intermediate files, final
datasets for distribution

Wrapping
for generating ,
and simulating the

Scripting high-level science functions
Steering (and installing!) the whole pipeline

Beautiful code and natural programming

code is beautiful

Ak

Python can help B

numpy

O'REILLY*

Mathematical constructs—side-by-side comparisons, code should be
transparently parallel; Fortran was formula translator

Flow of information—easy inspection by collaborators and by our
future selves

Simplicity and beauty—symmetry is a guiding principle for physicists...
easy to see when a crystal is broken

Feels like home—naturalness

Indeed, the ~cn of Pyihon could have been written by a physicist

Beautiful is better than ugly.

Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Special cases aren't special enough
to break the rules.

Although practicality beats purity.

Physicists try to build their own little experiment, isolated and
protected from the world...

For our data format, we adopted CACR’s XS dialect of XVl

Why XML?

What XML?

» We figured a text-based format' would be
reassuring to neophytes (easy to parse, less
dependent on I/O libraries)

* Thus, we eliminated standard binary?
formats for scientific data (HDF, EA'S)

* XML offered emple 1/O libraries,
self-describing data, and pice formatting in
web browsers with XSKT?® and Javascript

For our long time series, binary-file performance
was very desifable’ Linked raw files + XML
headers offer the best of both worlds.

“Binary XML formats (Fast Infoset, BiM, even
Protocol Buffers) really have different use cases.

“They 4dll have XML implementations, but those
are‘mostly useful in transcoding...

SThe nastiest language I've ever met. Turing-
complete, but boy you have to sweat it!

» XSIL (Extensible Scientific Interchange
Language), is a “flexible, hierarchical,
extensible transport language for scientific
data objects”

* Itis based on eight simple XML elements
(XSIL, Param, Array, Table, Stream, ...)

e Itis used (not well) in LIGO, and in a few
other CACR projects.

* |t allows linking (even remote) of “raw”
floating-point data streams.

« If I had to co it again: probably the Virtual
Observatory’s \VOTable.

<XSIL>
<Param Name="Author">Michele Vallisneri</Param>

<XSIL Type="SourceData">
<XSIL Name="Binary-1.1.la" Type="PlaneWave">
<Param Name="SourceType">
GalacticBinary
</Param>
<Param Name="EclipticLatitude"
0.9806443268
</Param>
<Param Name="EclipticLongitude" Unit:
5.088599
O </Param>
5 <Param Name="Polarization"
3.703239
</Param>
[---]
</XSIL>
[
</XSIL>

Unit="Radian">

Radian">

e parameters

Unit="Radian">

GW sources

<XSIL Type="TDIData">
<XSIL Name="t,Xf,Yf,zf" Type="TimeSeries">
<Param Name="TimeOffset" Type="Second">0</Param>
<Param Name="Cadence" Unit="Second">15</Param>
<Param Name="Duration" Unit="Second">60</Param>

0:03 <Array Name="t,Xf,Yf,Zf" Type="double">
[0} <Dim Name="Length">4</Dim>
o <Dim Name="Records">4</Dim>
'g <Stream Type="Remote" Encoding="Binary">
examplefile-0.bin
</Stream>
</Array>
</XSIL>
</XSIL>
</XSIL>

Mock LISA Data Challenge XML File Format, v. 1.0

File Info
Authors morgoXML py
2010-02-25T15:17:87CET 180-8801
challenged.0 (frequency), source seed = 5860216, noise seed = 5860216, LISAtools
VN revision 1149
1isaXML 1.0 [M. Vallisneri, June 20061
Source data [+/-]
SMBH-1 (PlaneWave)
SourceType FastSpinBlackHoleBinary
EcipticLatitude 127472112256 Fadian
EciipicLongitude 331085042806 Fadian
PolarAngleOfSpini 399040169508 Fadian
PolarAngloOiSpin2 0133340540849 Radian
S, 3. Fadian
AzimuthalAngioOfSpin2 480316760452 Radian
Spint 0691835240154 MassSquared
Spinz 0.373503186309
Massi 3368177.50564 SolarMass
Mass2 57044700184 SolarMass
CoaloscenceTime 7383673 60158 Socond
PhaseAtCoaloscence 0872784027283 Fadian
InitialPolarAngiol 230157082168 Radian
inifalAzimuthaiAngiel. 176006605001 Fadian
Distanco i Parsoc
Polarization] Fadian
TDI data [+/]
challenge4.0 (TDIObservable)
[DataType Fractionaif requency
TimeSeries: tX1,Y1,21
Cadence 150 Socond
TimoOffset 0.0 Sacond
Duration 629145600 Sacond
Array Stroam: {X1,V1.2 Filoname chalienged 0 iraining:
frequency-0.oin
Encoding Binary LitioEndian
Type
Unit
Longth 4104304
Fecords 4

XSIL source

Firefox rendering (not really the same file...

We then needed a

for XML from Python

We need to read, write, edit lisaXML files.

is crucial to natural scripts

So we wrote our own intuitive 10 interface to mirror the semantics of Python and lisaXML:
<Param>s — attributes; <Array>s = numpy arrays; <Table>s — iterators

(DOM was too complicated... SAX too clumsy... we chose RXP—quick, simple, and a little dirty

<?xml version="1.0"?2>

<XSIL>

<Param Name="Author">
Michele Vallisneri
</Param>

<XSIL Type="SourceData">
<XSIL Name="Galactic binary 1.1”
Type="PlaneWave">
<Param Name="SourceType">
GalacticBinary
</Param>
<Param Name="EclipticLatitude"
Unit="Radian">
0.9806443268
</Param>

[...more Params...]
</XSIL>

[...more PlaneWave sources...]
</XSIL>

>>> fileobj = lisaXML(‘test.xml’,’r’)
>>> fileobj

<lisaXML file 'test.xml'>

>>> fileobj.Author

'Michele Vallisneri’

>>> fileobj.SourceData

<XSIL SourceData (2 ch.)>

>>> gb = fileobj.SourceData[0]

>>> gb

<XSIL PlaneWave 'Galactic binary 1.1'>
>>> gb.Name

'Galactic binary 1l.1l.la’

>>> gb.EclipticLatitude

0.9806443268

>>> gb.EclipticLatitude Unit

‘Radian’

>>> gb.parameters

['EclipticLatitude', 'EclipticLongitude',
'Polarization', 'Frequency', 'InitialPhase’

'Inclination', 'Amplitude']

Armed with the lisaXML interface,
we used to our legacy G/C++ code

SWIG connects programs and libraries written in C/C++ with many high-level languages.

It requires (but allows wrappers to do smart things) and has especially strong
, including numpy.

is simple enough that it can be copied and adapted by non-Python savvy contributors

Tmod;lle BBH This is a SWIG interface module... it will create Python wrappers

$include "BBHChallengel.hh” for all classes declared in the C++ header BBHChallenge1.hh

$pythoncode %{

X X All source classes inherit from lisaxml.Source, which
import lisaxml, numpy

gives them access to lisaXML parameters
class BlackHoleBinary(lisaxml.Source):
def waveforms(self,samples,deltat,inittime): The only new method we need!

bbh = BBHChallengel(self.Massl,self.Mass2,[...]) Initialize a source instance as we would in
C++, using a natural syntax for parameters

hp

hc

numpy .empty (samples, 'd")
numpy .empty (samples, 'd")

Then call the C++ code that generates waveforms
bbh.ComputeWaveform(hp,hc,deltat,inittime) (using a little typemap magic to pass numpy arrays)

return hp,hc
%}

Last, we wrote Python scripts for high-level science functions,
to tie the pipeline together, and for a global installer script

* To:

* Do:

- To:

* Do:

« To:

* Do:

* To:

* Do:

write high-level science scripts: e.g., to choose GW-source parameters randomly

enjoy Python expressiveness and intuitive lisaXML interface:
bbh.Longitude = random.uniform(0,2*pi)

wrap legacy applications that read and write from fixed filenames
“fool” the applications by symlinking them into temporary directories, renaming files

tie command-line applications (e.g., to make source, LISA response) into pipeline

write a master script using Python’s OS, file-system and regex capabilities.
Even throw in basic queueing/multiCPU functionality with Python’s subprocess

implement a master installer (all libraries and codes) for helpless remote users
let Python (not make!) do the wgets, run setup.py and configure/make/make install

So it’'s like that...

It’'s important to
But:
Choose your wisely

Beware of and
(fix them before they bite you)

Try to avoid most
(e.g., sincx = x and sin(x)/x or 1)

as you write (yeah, right)

T DUNNO-. 7 And:
DYNAMIC TYPING? I JUsT TYPED .)
97\‘ WHITESPACE? / import ontigruity Remember that scientists are not
/ core Jonus! | | THATS T2 of computer
LEARNED ITLAST PROGRAMMING ... T ALS0 SAMPLED
]l\ilGHT! EVERYTHING 1S FUN W/:[GA\N! EVERYHING IN THE Ianguages
ITS A WHOLE MED\CINE CABINET
15 80 SMPLE! NEW MORLD iy Software-development theory
HELLO WORLD 1S JusT UP HERE! [
. g \
et "Hell, uorld] I BT TN THSS does not really apply to
YOU FLYING? 15 THE PYTHON.

Packages: numpy good, matplot lib bad (unsteady API)
Worst kind of hack: fixing somebody else’s package at runtime
Idioms: things that a non-native speaker cannot figure out logically

Non-native speakers: eventually we’ll make an embarassing mistakes
Software development for scientific programming—just do your best,
pick your examples

