The Palomar Transient Factory Pipeline and Archive

John Good Carl Grillmair Steve Groom **Eugean Hacopians** Nouhad Hamam Ed Jackson Russ Laher Sean Mattingly Wei Mi Bill Reach Jason Surace Julian van Eyken Jeremie Vaubaillon

The Palomar Transient Factory

- Wide-angle, variable cadence sky survey
 - 7.8 square degree imager (1" sampling)
 - Uses 80% of Palomar 1.2m Oschin telescope time for five years
- Realtime transient detection
- Realtime, automated transient classification
- Automated followup using multiple facilities
- Searchable archive of every detected source in every frame

PTF Key Projects				
Various SNe	Dwarf novae			
Transients in nearby galaxies	Core collapse SNe			
RR Lyrae	Solar system objs			
CVs	AGN			
AM CVn	Blazars			
Galactic dynamics	LIGO & Neutrino transients			
Flare stars	Hostless transients			
Nearby star kinematics	Orphan GRB afterglows			
Rotation in clusters	Eclipsing stars and planets			
Tidal events	H-alpha ½ sky survey			

PTF Project Schedule

Project startup	Summer	2007
First light	13 Dec	2008

Commissioning start 12 Jan 2009

1st Science experiment start

1st Confirmed transient detection

15 Feb 2009

2 March 2009

Commissioning end

May 2009

PTF discoveries to date

Transient type	#
SN 1a	23
SN II	6
SN IIn	1
SN Ic	1
Unknown SN	1
CV	3
Rather weird	1

- All from < 6 nights of data during commissioning (low efficiency)
- Released in ATels 1964, 1983, 2005

IPAC Data Volumes

- In production mode, PTF will generate ~60GB of raw data per night on average.
- Peak volumes will approach ~100 GB on clear winter nights.
- All raw and processed data will be stored at IPAC.
- A total of ~300 TB of raw and processed imaging data will be stored over course of the 5-year survey.

	2MASS	SDSS	HST	Spitzer
Images	40x	40x	10x	16x
Database Records	60x	140x	N/A	N/A

PAN-STARRS will produce data at a much higher rate (camera has 10x as many pixels), but discards nearly all of it.

IPAC Hardware

- PTF Pipeline hardware currently includes:
 - 12 Sunfire x4150 8-core pipeline drones
 - 2 Sunfire x4150 DBMS servers
 - 1 Sunfire x4150 operations file server (software, sandboxes)
 - 2 Nexsan SATAbeasts 42TB connected to IRSA file server for raw and processed data (currently on-loan from Spitzer – will be replaced in 100TB increments next year)
 - 2 Sun 2540 6TB raid arrays for DBMS storage
 - 4 Nexsan SATAblades for primary file server (software, sandboxes)
 - 2 Nexsan SATAblades for secondary database
- Will require an additional 260 TB of storage to complete the survey.
- Redundancy for failover capacity of both cpu and disks. Worst case is a database failure, but the archive and working databases can be rebuilt from each other.

Overall Data Flow

Pipeline

IPAC Image Processing Pipeline for PTF

1st CALIBRATION

Superbias subtraction (image)

floating bias subtraction (value)

Pixel Mask

Nouhad Hamam, IPAC, June 27, 2008, Version 5.1 Contributions by: Jason Surace, Russ Laher, Carl Grillmair, and Sean Mattingly

Sky frames

Astrometry.net Solution

SEEING Calculation

Superflat Generation via

Masked Images

Bias frames

modules written in C Dome frames These carry out basic functions, and are a **Domeflat Generation** combination of inhouse and community software (notably Sextractor, Scamp, and Astrometry.net) **Object Detection and Masking** Mask Generation Sextractor 2nd CALIBRATION: FLATTENING VIA SUPERFLAT

Superbias Generation Pipeline currently processes a night's data in 6-8 hours.

> Reprocessing will be possible during normal operations.

Based on tests in progress, processing speed will likely improve by a factor of two or more with the application of multi-threading.

Copy of the processed images (NaNs replaced & multiplied by Pixel Area)

FINAL TASKS

- Detecting NaNs, CCDBleeds and Rad Hits, and flagging in the DMask

Calibration

- Though there are no set requirements, the goal is to obtain 2% photometry consistently.
- Analysis of pipeline-generated flat fields currently indicates stability of 0.5-1%.
- Photometric calibration will be carried out using either observed SDSS fields, or if possible, saturated Tycho stars.
 - By virtue of their high surface density and all-sky distribution, Tycho stars may enable us to obtain accurate photometry even on traditionally non-photometric nights.
- If SDSS fields are used, non-SDSS fields will be calibrated by computing nightly extinction coefficients.

Database

- While IRSA continues to use Informix, the PTF operations database is being run under Enterprise PostgreSQL
 - Development has been under mixed database architecture.
- The primary Sources table will contain astrometry and photometry of every source detection over the course of the survey.
 - This table, with between 20 and 40 billion rows, will be among the largest tables ever created.
 - Load testing underway to address speed/scalability issues.
- A source association pipeline, run nightly, will generate a Merged Sources table, which will provide time-series photometry for every source detected.
 - This is expected to be the primary science output of the IPAC pipeline.
 - Exploring techniques under development for LSST for handling this quickly

IRSA Interface

IRSA will provide a Gator-like interface to enable collaboration astronomers (and later the public) to retrieve raw and processed images, image cut-outs, supermosaics, and query tables by position, color, degree of variability, time, etc.

